Сжатие без потерь (Lossless)
Сжатие без потерь (англ. Lossless data compression) — метод сжатия информации, при использовании которого закодированная информация может быть восстановлена с точностью до бита. При этом оригинальные данные полностью восстанавливаются из сжатого состояния. Этот тип сжатия принципиально отличается от сжатия данных с потерями. Для каждого из типов цифровой информации, как правило, существуют свои оптимальные алгоритмы сжатия без потерь.
Сжатие данных без потерь используется во многих приложениях. Например, оно используется в популярном файловом формате ZIP и Unix-утилите Gzip. Оно также используется как компонент в сжатии с потерями.
Сжатие без потерь используется, когда важна идентичность сжатых данных оригиналу. Обычный пример — исполняемые файлы и исходный код. Некоторые графические файловые форматы, такие как PNG или GIF, используют только сжатие без потерь; тогда как другие (TIFF, MNG) могут использовать сжатие как с потерями, так и без.
Техника сжатия без потерь
Из комбинаторики следует, что нет алгоритма сжатия без потерь, способного уменьшить хотя бы на байт любой файл. Впрочем, признак качества алгоритма сжатия не в этом — алгоритм должен эффективно работать на тех данных, на которые он рассчитан.
Многоцелевые алгоритмы сжатия отличаются тем, что способны уменьшать широкий диапазон данных — исполняемые файлы, файлы данных, тексты, графику и т. д., и применяются в архиваторах. Специализированные же алгоритмы рассчитаны на некоторый тип файлов (текст, графику, звук и т. д.), зато сжимают такие файлы намного сильнее. Например: архиваторы сжимают звук примерно на треть (в 1,5 раза), в то время как FLAC — в 2,5 раза. Большинство специализированных алгоритмов малопригодны для файлов «чужих» типов: так, звуковые данные плохо сжимаются алгоритмом, рассчитанным на тексты.
Большинство алгоритмов сжатия без потерь работают в две стадии: на первой генерируется статистическая модель для входящих данных, вторая отображает входящие данные в битовом представлении, используя модель для получения «вероятностных» (то есть часто встречаемых) данных, которые используются чаще, чем «невероятностные».